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Vertical dispersion by stratified turbulence
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We derive a relation for the growth of the mean square of vertical displacements, δz,
of fluid particles of stratified turbulence. In the case of freely decaying turbulence,
we find that for large times 〈δz2〉 goes to a constant value 2(EP (0) + aE(0))/N2,
where EP (0) and E(0) are the initial mean potential and total turbulent energy per
unit mass, respectively, a < 1 and N is the Brunt–Väisälä frequency. In the case of
stationary turbulence, we find that 〈δz2〉 = 〈δb2〉/N2 + 2εP t/N2, where εP is the mean
dissipation of turbulent potential energy per unit mass and 〈δb2〉 is the Lagrangian
structure function of normalized buoyancy fluctuations. The first term is the same as
that obtained in the case of adiabatic fluid particle dispersion. This term goes to the
finite limit 4EP /N2 as t → ∞. Assuming that the second term represents irreversible
mixing, we show that the Osborn & Cox model for vertical diffusion is retained. In
the case where the motion is dominated by a turbulent cascade with an eddy turnover
time T � N−1, rather than linear gravity waves, we suggest that there is a range of
time scales, t , between N−1 and T , where 〈δb2〉 =2πCPLεP t , where CPL is a constant
of the order of unity. This means that for such motion the ratio between the adiabatic
and the diabatic mean-square displacement is universal and equal to πCPL in this
range. Comparing this result with observations, we make the estimate CPL ≈ 3.

1. Introduction
The atmosphere and the oceans are mixed by random vertical velocity fluctuations.

This mixing is commonly modelled by introducing the concept of eddy diffusion.
Small-scale eddies are thought to cause large-scale effects in the same statistical way
as molecular motions at a microscopic level can give rise to macroscopic fluctuations.
For stable stratification one of the most commonly used eddy diffusion models is the
Osborn & Cox (1972) model, with eddy diffusivity

DE =
εP

N2
= c

εK

N2
, (1.1)

where N is the Brunt–Väisälä frequency, εP is the mean potential energy dissipation
per unity mass, εK is the mean kinetic energy dissipation and c = εP /εK is a number
which is commonly referred to as the ‘mixing efficiency’ (Osborn 1980). The Osborn &
Cox eddy diffusivity is estimated from measurements of εK and N and then assigning
a value to c. Much experimental and numerical effort has been made to determine
the value of c (see e.g. Peltier & Caulfield 2003 and Pardyjak, Monty & Fernando
2002). The current standard value is c = 0.2.

The Osborn & Cox model is derived by assuming that there is a balance between
dissipation and production in the Reynolds-averaged equation for mean-square
buoyancy fluctuations. For many geophysical flows it can be questioned whether
there is such a balance. A great deal of effort (e.g. Lien & D’Asaro 2004) has
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therefore been made to analyse the problem of vertical mixing from the fundamental
point of view of fluid particle dispersion. The microscopic basis of molecular diffusion
is the random walk of molecules with a mean-square displacement growing linearly
with time. The diffusivity can be determined from the rate of this growth (Einstein
1905). If it could be demonstrated that the mean square of vertical displacements of
fluid particles, δz, in a geophysical flow grows linearly with time for sufficiently small
time scales, which may still be larger than N−1, then it would seem natural to define
the eddy diffusivity as

lim
t→0

t>N−1

1

2

〈δz2〉
t

, (1.2)

in close analogy with the corresponding relation for the molecular diffusivity (Einstein
1905; see also Kennard 1938, p. 286). However, there is an obvious problem with
such an approach. It cannot generally be assumed that the vertical fluid particle
movements are completely random, like molecular movements. A fluid particle which
is adiabatically displaced in a stably stratified fluid will experience a restoring force.
For short time scales the movement of the particle may be similar to a random
walk, but eventually the particle will always return to the same level that it started
from. Therefore, adiabatic motion will not produce any net gradient diffusion. The
problem has been analysed by Winters & D’Asaro (1996) and Lien & D’Asaro (2004),
who developed analytical and experimental methods by which one may separate the
adiabatic part of the motion from the diabatic part. In this paper, we will show that
that the expression for the growth of mean-square particle displacements consists
of two terms, which can be interpreted as an adiabatic and a diabatic contribution.
Indeed, the diabatic contribution is found to grow linearly with time and substituting
this linear growth into the formula (1.2) we obtain the Osborn & Cox (1972) model.
We will also make the suggestion that for time scales between N−1 and T , where
T is of the order of one day in geophysical applications, the adiabatic mean-square
displacement growth is also linear, and that the ratio between the adiabatic and
diabatic growth is universal in this range.

2. Analysis
2.1. Fluid particle dispersion

In the case of a constant background stratification the Boussinesq equations can be
written as

du
dt

= −∇p − Nezb + ν∇2u, (2.1)

db

dt
= Nw + κ∇2b, (2.2)

∇ · u = 0. (2.3)

Here, u is the velocity field, ν and κ are the molecular viscosity and diffusivity,
respectively, p is the pressure, ez is the vertical unit vector, N is the Brunt–Väisälä
frequency, b = −gρ ′/(Nρo), where ρ ′ and ρo are the fluctuating and background
densities, respectively, g is the acceleration due to gravity and w = ez · u is the vertical
velocity component. For applications in the atmosphere, the fluctuating density should
be replaced by the fluctuating potential temperature, including a minus sign, and the
background density field should be replaced by the background potential temperature
field. The normalization of the buoyancy so that it has the dimension of velocity,
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rather than acceleration, as is common practice, allows us to write mean potential
energy per unit mass and mean dissipation of potential energy per unit mass as

EP = 1
2
〈b2〉, (2.4)

εP = κ〈∇b · ∇b〉. (2.5)

The assumption of a constant Brunt–Väisälä frequency does not imply that it should
be regarded as globally constant over very long time and length scales, but only that
it can be regarded as approximately constant over the time and length scales which
will be considered in this analysis. Three time scales will appear in the analysis:
the Kolmogorov time scale τ = (ν/εK )1/2, the buoyancy time scale N−1 and the eddy
turnover time scale T , which in geophysical applications should scale with the inertial
frequency f0 (Lindborg 2005) and therefore should be of the order of one day. We
will assume that τ � N−1 � T . In the case where we take the limit t/T → ∞, the
assumption of a constant N must be regarded as an idealization.

We consider a domain in a fluid which is governed by equations (2.1)–(2.3) and we
assume that there are no rigid boundaries in the vicinity of the domain. The width
of the domain is larger than lh = E

3/2
K /εK in both horizontal directions and the height

is larger than lv =E
1/2
K /N , where EK is the mean turbulent kinetic energy per unit

mass. Estimates of these length scales for geophysical applications will be given in
§ 2.2. Following Pearson, Puttock & Hunt (1983), we integrate (2.2) along the track
of a fluid particle from time zero to t , multiply the resulting equation by w(t) and
average over all fluid particles in the domain. In this way we obtain

〈b(t)w(t)〉 − 〈b(0)w(t)〉 = N
1

2

d

dt
〈δz2〉 + κ

∫ t

0

〈∇2b(t ′)w(t)〉 dt ′, (2.6)

where δz = z(t) − z(0). Again using (2.2) we can rewrite the left-hand side of equa-
tion (2.6) as

1

N

[
dEP

dt
− d

dt
〈b(0)b(t)〉 + εP + κ〈b(0)∇2b(t)〉

]
. (2.7)

Here, we have assumed that the small-scale turbulent field is locally homogeneous
(Kolmogorov 1941), which implies that

−κ〈b∇2b〉 = κ〈∇b · ∇b〉 = εP . (2.8)

The last term within the square brackets in (2.7) can be written as

κ〈b(0)∇2b(t)〉 = −εP F1(t/τ ), (2.9)

where F1(0) = 1 by local homogeneity. The presence of the Laplace operator in the
two-time correlation (2.9) suggests that it is a correlation which is determined by
the dynamics of the very smallest turbulent scales. We therefore assume that the
correlation time is equal to the Kolmogorov time scale so that |F1| � 1 when t � τ .
This means that the last term in (2.7) is much smaller than the sum of the three other
terms when t � τ , unless these three terms cancel each other. In the Appendix, we
argue that there is no such cancellation.

We now turn to the last term on the right-hand side of equation (2.6). Pearson
et al. (1983) argued that in the case of stable stratification this term should be of
leading order. We shall argue that it is negligible for t � τ . First we make an order of
magnitude estimate of the leading-order contribution to this term and argue that this
is small. Then we argue that the leading-order contribution, in fact, vanishes if we
make the assumption of local isotropy (Kolmogorov 1941). The two-time Lagrangian
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correlation function κ〈∇2b(t ′)w(t)〉 has the same dimension as energy dissipation per
unit mass and should scale with the mean dissipation. The presence of the Laplace
operator in this term suggests that the correlation time is very small, presumably
equal to the Kolmogorov time scale. We can therefore write

κ〈∇2b(t ′)w(t)〉 = εKF2

(
t − t ′

τ

)
, (2.10)

where we also have assumed that the turbulence is a stationary process at the
Kolmogorov scale. Using expression (2.10) we find

κ

∫ t

0

〈∇2b(t ′)w(t)〉 dt ′ = (εKν)1/2
∫ t/τ

0

F2(λ) dλ ∼ (εKν)1/2, (2.11)

when t � τ . Here we have assumed that the two-time correlation (2.10) goes to zero
sufficiently fast for large time separations, so that F2 is integrable.

The left-hand side of (2.6) is of the order of εP /N ∼ εK/N . The ratio between (2.11)
and the left-hand side of (2.6) can thus be estimated as (εK/N2ν)−1/2 = τN � 1. The
last term on the right-hand side of (2.6) is therefore negligible. As already pointed
out, making the assumption of local isotropy, it can be argued that this term is not
only small but zero. This can be seen from the following estimate:

|〈∇2b(t ′)w(t)〉| � |〈∇2b(t)w(t)〉| = |〈∇b(t) · ∇w(t)〉| = 0, (2.12)

where the two last equalities follow from local isotropy. Local isotropy implies that
any two-point correlation of derivatives of flow field quantities is isotropic, meaning
that it is invariant under arbitrary rotations and reflections (see Monin & Yaglom
1975). In stratified turbulence the local isotropy assumption is valid at length scales
which are considerably smaller than the Ozmidov length scale lO = ε

1/2
K /N3/2 (see

Brethouwer et al. 2007). The last equality in (2.12) follows by imposing invariance
under reflection in a horizontal plane, that is invariance under the transformation
(z, w) → (−z, −w).

Substituting (2.7) into (2.6), neglecting the two terms including κ and integrating
we obtain

〈δz2〉 =
2

N2

(
EP (0) + EP (t) − 〈b(0)b(t)〉 +

∫ t

0

εP (t ′) dt ′
)

. (2.13)

Before analysing the case of stationary turbulence, we briefly give an interpretation of
(2.13) for the case of freely decaying turbulence. The last term within the parentheses
is the total amount of potential energy which has been dissipated up to time t . Clearly,
this term goes to a constant as t → ∞ and this constant must be some fraction, a < 1,
of the total initial energy EK (0) + EP (0). The two middle terms both go to zero as
t → ∞. Thus,

〈δz2〉 → 2 [EP (0) + a(EK (0) + EP (0))] /N2 (2.14)

as t → ∞. A similar result was also obtained by Kaneda & Ishida (2000), using
rapid distortion analysis combined with a statistical model. Their analysis suggests
that the fraction a is not universal, but varies with the initial conditions. Indeed,
direct numerical simulations of decaying stratified turbulence (Kimura & Herring
1996; Kaneda & Ishida 2000; Venayagamoorthy & Stretch 2006) show that the
mean-square vertical displacement of fluid particles takes a constant value at large
times and that this value is proportional to N−2. This was also demonstrated in an
experiment on freely decaying stratified turbulence by Britter et al. (1983).
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In the case where there is a continuous source of energy the turbulence can reach
a stationary or quasi-stationary state where εP can be regarded as constant in time.
In this case equation (2.13) can be written as

〈δz2〉 =
〈δb2〉
N2

+
2

N2
εP t , (2.15)

where 〈δb2〉 = 〈(b(t) − b(0))2〉 is the Lagrangian buoyancy structure function. It is
obvious that the first term in (2.15) is identical to the term obtained by integrating
(2.2) without including the molecular diffusion term, that is in case of adiabatic
motion. In the case of a completely stationary process we have

lim
t/T →∞

〈δb2〉
N2

=
4EP

N2
. (2.16)

It is therefore unlikely that this term can give rise to any net gradient diffusion. We
interpret this term as the adiabatic contribution to the mean-square displacement.
The second term, on the other hand, is obtained as a result of including molecular
diffusion in equation (2.2). It grows linearly with t , at least from t � N−1 and as long
as εP can be regarded as constant. We interpret this term as the diabatic contribution
to the mean-square displacement, giving rise to irreversible mixing. We write it as

〈δz2〉mix =
2

N2
εP t . (2.17)

Substituting this expression into (1.2), we obtain the Osborn & Cox (1972) expression
for the eddy diffusivity. Note that the Osborn & Cox diffusivity is obtained here by
considering the physics of fluid particle dispersion at time and length scales which
are characteristic for the random fluid particle movements that mix the fluid, rather
than assuming a global energy balance over much larger time and length scales.

2.2. The adiabatic contribution

In some cases the adiabatic mean-square displacement is mainly caused by linear
gravity waves, as suggested by Lien & d’Asaro (2004). Linear gravity wave motion
is adiabatic, oscillatory and cannot therefore cause any net diffusion. In other
cases, however, the dynamics of adiabatic displacements are dominated by stratified
turbulence (Riley & deBruynKops 2003; Lindborg 2006).

Somewhat popularized, stratified turbulence consists of ‘pancake eddies’ whose
horizontal length scales are between the Ozmidov length scale, lO = ε

1/2
K /N3/2, and the

length scale lh =E
3/2
K /εK and whose vertical scales are between the Ozmidov length

scale and the scale lv =E
1/2
K /N . The ratio lv/ lh defines a Froude number

Fh =
εK

NEK

, (2.18)

which is much smaller than unity. In the upper troposphere and the lower stratosphere
(see Lindborg 2006) lh is of the order of 500 km, lv is of the order of 1 or a few
km, lO is of the order of 1 to 10 m and Fh of the order of 10−3. The eddies of
stratified turbulence are undergoing a forward energy cascade which is produced by
strong nonlinear interactions, just as in three-dimensional Kolmogorov turbulence.
The horizontal kinetic and potential energy spectra are of similar form as in three-
dimensional turbulence, that is

EK (kh) = CKε
2/3
K k

−5/3
h , (2.19)
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EP (kh) = CP

εP

ε
1/3
K

k
−5/3
h , (2.20)

where CK and CP are constants. In numerical simulations (Lindborg 2006; Lindborg
& Brethouwer 2007) these two constants take the same value, CK ≈ CP ≈ 0.5. For the
purpose of the present analysis we now make some assumptions about Lagrangian
spectra of stratified turbulence. The Lagrangian frequency spectrum of a quantity
is obtain by measuring the time series of that quantity following a fluid particle
and then calculating the power spectrum of the signal. For Kolmogorov turbulence
the Lagrangian frequency spectrum of velocity fluctuation has the form εKω−2, (see
Monin & Yaglom 1975). This theoretical result has been confirmed for the spectrum
of vertical velocity fluctuations in the upper boundary layer of the ocean (Lien,
D’Asaro & Dairiki 1998). In close analogy with the theory of Kolmogorov turbulence
we assume that there is an inertial range of frequencies where the Lagrangian spectra
of velocity and buoyancy fluctuations have the form

EKL(ω) = CKLεKω−2, (2.21)

EPL(ω) = CPLεP ω−2, (2.22)

where CKL and CPL are constants. We have included a factor of 1/2 in the definition,
so that integration over all frequencies will give the total kinetic and potential energy.
The form of the energy frequency spectra (2.21) and (2.22) can be motivated in a
way similar to the corresponding kinetic energy spectrum of Kolmogorov turbulence.
The turbulence is undergoing an energy cascade in which the transfer of kinetic and
potential energy is equal to εK and εP , respectively. From dimensional considerations
it can be argued that the frequency spectra should have the form of (2.21) and (2.22)
in the inertial range. In theory, the inertial range of stratified turbulence is within
frequencies for which T −1 � ω � N . In practice, however, the lower cutoff frequency
can be supposed to be some fixed multiple of T −1 and the higher cutoff frequency
some fixed fraction of N .

D’Asaro & Lien (2000) show Lagrangian frequency spectra of horizontal kinetic
energy measured in the ocean (see their figure 11), having the form ω−2 for three
decades of frequencies, with two decades at lower frequencies than N and one at higher
frequencies. They interpret the lower-frequency part as an internal wave spectrum
and the higher-frequency part as a spectrum of isotropic Kolmogorov turbulence.
However, they also point out that ‘the classification of a given flow as ‘waves’ or
‘turbulence’ is always problematic’. Typical fluid velocities in the observed field were
found to be comparable to the internal wave phase speeds, pointing to the importance
of strong nonlinearities. Thus, it does not seem unreasonable to interpret the lower-
frequency part of the observed spectrum as a spectrum of stratified turbulence in
accordance with (2.21). According to both interpretations there should be approximate
equipartition between kinetic and potential energy for frequencies smaller than N .
Therefore, the potential energy spectrum should have magnitude and shape similar to
the kinetic energy spectrum according to both hypotheses. The difference is that the
kinetic and potential energy spectra scale with εK and εP respectively, according to
the stratified turbulence hypothesis, while no such scaling is predicted by the internal
wave hypothesis.

Strictly speaking, the kinetic energy spectrum (2.21) is only the spectrum of
horizontal velocity fluctuations. As we will argue in the next section, the spectrum
of vertical velocity fluctuations of stratified turbulence will be flat or ‘white-noise’
in the inertial range, due to the strong damping of vertical motions. Therefore, the
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inertial-range dynamics of stratified turbulence is highly anisotropic, in contrast to
the inertial-range dynamics of Kolmogorov turbulence, as also pointed out by Riley
& Lindborg (2008).

In this analysis we will, in fact, only use the assumption (2.22). This assumption
can also be formulated as (see Monin & Yaglom 1975, p. 90)

〈δb2〉 = C ′
PLεP t, (2.23)

where C ′
PL is a constant which is related to CPL as

C ′
PL = 2πCPL. (2.24)

Relation (2.23) is supposed to hold in an inertial range of time separations lying in
between N−1 and T .

Substituting the expression (2.23) into (2.15) we obtain

〈δz2〉 = (πCPL + 1)2εP t/N2, (2.25)

in this range of time scales. Here, the first term represents the adiabatic contribution
and the second term represents the diabatic contribution to the mean-square particle
displacement. The ratio between the two contributions is equal to πCPL and is
universal, if the stratified turbulence assumption is true. Based on measurements of
Lagrangian frequency spectra of vertical velocity fluctuations in the upper boundary
layer of the ocean, Lien & D’Asaro (2004) found that the ratio between the measured
mean-square displacement and that obtained from (2.17) was generally equal to
about ten. Assuming that the adiabatic displacements in these measurements were
dominated by stratified turbulence, we obtain CPL ≈ 3.

3. Comparison with previous analyses
In this paper, we have derived an analytical relation (2.13) for the evolution of

〈δz2〉, by integrating the dynamical equation for buoyancy fluctuations, neglecting two
terms on the basis of order of magnitude estimates. The crucial assumption we make
is that the interaction time scale for exchange of density between fluid elements is
equal to the Kolmogorov time scale. If this assumption is correct, the derived relation
has general validity.

In the case of freely decaying stratified turbulence we predict that for large times
〈δz2〉 should level off to a constant value determined by (2.14). This result is fully
consistent with the prediction of Kaneda & Ishida (2000). The difference between
our analysis and theirs is that we have directly integrated the equation for buoyancy
fluctuations, while Kaneda & Ishida used rapid distortion analysis combined with
statistical modelling. Our result can thus be viewed as analytical support for their
model result.

Using a Langevin statistical model developed by Csanady (1964), Pearson et al.
(1983) (henceforth referred to as PPH) derived a relation for the evolution of 〈δz2〉
for the case of stationary turbulence. For t � N−1 their relation has the form

〈δz2〉 ∼ 〈w2〉
N2

+ γ 2 〈w2〉
N

t, (3.1)

where w is the vertical velocity fluctuation and γ is a model parameter. The relation
(3.1) has a form similar to our relation (2.15) for large times, since 〈δz2〉 is written as
the sum of a constant term and a term growing linearly with time. However, there
are some important differences. According to the analysis of PPH, 〈δz2〉 should reach
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the asymptotic form (3.1) in a time proportional to N−1. In general, different curves
of 〈δz2〉 should collapse if the time axis is scaled by N−1. According to our analysis,
the last term in (2.15) becomes equal to the second term at a time t ≈ 2EP /εP . The
asymptotic linear growth of 〈δz2〉 is therefore reached in a time proportional to

T ∼ EP

εP

∼ EK

εK

. (3.2)

This time scale is independent of N and larger than N by a factor F −1
h . Thus, in the

limit of strong stratification, our analysis suggests that 〈δz2〉 reaches its asymptotic
form considerably later than suggested by the analysis of PPH. Moreover, a change
of N , keeping all other parameters constant, would only affect the magnitude of the
mean-square displacement but not the time scale of its evolution. Indeed, this is a
very important difference between our result and the result of PPH. On the basis
of existing experimental and numerical evidence it is not possible to decide which
of the two predictions are correct. PPH reported some evidence in favour of their
analysis, while Kimura & Herring (1996) noted that the damping rate of 〈δz2〉 was
independent of N in their direct numerical simulations, contrary to the prediction of
PPH.

Another difference is that the first term in our relation (2.15) goes to the constant
value 4EP /N2 instead of 〈w2〉/N2 as predicted by equation (3.1). For moderate
stratification these two terms are presumably of the same order of magnitude.
However, in the limit of strong stratification our term should be much larger than the
corresponding term of PPH, since the ratio EP /EK stays finite in the limit of small
Fh while the ratio 〈w2〉/EK goes to zero in the same limit (Brethouwer et al. 2007).

As for the last term in (2.15), which is growing linearly with t , we shall now show
that it follows from our assumptions that this term can be rewritten into the same
form as the corresponding term in the relation derived by PPH.

Taylor (1921) derived a formula for the growth of the mean square of fluid particle
displacements, including the Lagrangian two-time velocity correlation function.
Batchelor (1949) rewrote Taylor’s formula in terms of the Lagrangian power frequency
spectrum of velocity fluctations. According to this formula we can write

〈δz2〉(t) = 4

∫ ∞

0

EwL(ω)
sin2(ωt/2)

ω2
dω, (3.3)

where EwL(ω) is the power spectrum of vertical velocity fluctuations. Using this
formula it is possible to show (Monin & Yaglom 1975, p. 528) that if 〈δz2〉 =K1t in a
range of times t , then there is a corresponding range of frequencies where EwL =K2,
with K2 = K1/π. From this relation we can deduce the general shape of EwL. For
ω � T −1 we should have

EwL(ω) =
2εP

πN2
, (3.4)

For T −1 � ω � N we should have

EwL(ω) =
2εP (1 + πCP )

πN2
. (3.5)

For N � ω � τ−1 we should have the frequency spectrum of Kolmogorov turbulence

EwL(ω) = βεKω−2, (3.6)

where β is the Lagrangian Kolmogorov constant. We can now estimate the total
vertical velocity variance by direct integration of EwL. The low frequency range will
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Figure 1. Vertical velocity variance normalized by εP /N , as a function of buoyancy Reynolds
number R = εK/(νN2). From direct numerical simulations of strongly stratified stationary
turbulence by Brethouwer et al. (2007).

give a negligible contribution. The contribution from the middle frequency range is
estimated by integrating (3.5) from zero frequency to N−1 and the contribution from
the high frequency range is estimated by integrating (3.6) from N−1 to infinity. In this
way we find

〈ww〉 ≈ α
εP

N
, (3.7)

where

α = 2CP +
2

π
+

β

c
≈ 10 . (3.8)

Here, we have used the values CP = 3, as estimated in the previous section, β =1.2,
as estimated by Tennekes & Lumley (1972)† and c = 0.4, as found in direct numerical
simulations of Riley & deBruynKops (2003) and Brethouwer et al. (2007). If we
instead use the standard value c =0.2 for the mixing efficiency we obtain α ≈ 13,
which in this context makes a small difference.

In figure 1, we have plotted 〈w2〉N/εP for different values of the buoyancy
Reynolds number R = εK/(νN2). The data points are calculated from direct numerical
simulations of strongly stratified stationary turbulence previously reported by
Brethouwer et al. (2007). The stratification is strong in all simulations and the value
of N is varied by a factor of 80 between the different simulations. In the simulations
with highest buoyancy Reynolds number there is a narrow inertial range of stratified
turbulence at length scales larger than the Ozmidov length scale. However, there is
no classical Kolmogorov inertial range at smaller length scales. So it may be argued
that the plot is not very relevant when we analyse the high-Reynolds-number limit.
Nevertheless, we think that the weak variation of 〈w2〉N/εP with R and the fact that
the results are consistent with the estimated value α ≈ 10, lend some support to our
analysis.

Substituting (3.7) into (2.15) we find

〈δz2〉 =
〈δb2〉
N2

+ 2α−1 〈w2〉
N

t. (3.9)

† We have multiplied the value given by Tennekes & Lumley, β = 1.8, by 2/3, since we have used
another definition of β .
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The last term in this expression is equal to the last term in expression (3.1) taken
from PPH, if we put 2α−1 = γ 2. With α = 10, we obtain γ = 0.45, which is close to
one of the values, γ =0.4, estimated by PPH from observational evidence, but not
very close to the other value, γ = 0.1.

4. Summary and conclusion
Apart from providing analytical support for the model result of Kaneda & Ishida

(2000) for freely decaying stratified turbulence, we have made two well-defined
predictions for stationary stratified turbulence. These predictions may be tested against
observations or numerical simulations.

First, using the classical assumptions of local homogeneity and local isotropy, we
have derived an expression (2.15) for the growth of mean-square displacements of
fluid particles in stratified turbulence. The expression consists of two terms, which
may be interpreted as the adiabatic and the diabatic dispersion. The diabatic term
grows linearly with time, just like the mean quadratic displacements of molecular
motions. This term determines the asymptotic linear growth of 〈δz2〉 and has the exact
form 2εP t/N2, including no unknown constant. Assuming that this term represents
irreversible mixing, the Osborn & Cox (1972) expression for the eddy diffusivity is
retained, by using Einstein’s (1905) formula. We regard this as the most important
new result. The adiabatic term goes to the finite limit (2.16) at time scales of the
order of days and after this initial period the total growth is determined only by the
diabatic term.

Second, based on a Lagrangian extension of the hypothesis of stratified turbulence
at time scales between N−1 and T , we have suggested that the adiabatic term also
grows linearly with time and that the ratio between the adiabatic and the diabatic
growth is universal for stratified turbulence in this range of time scales.

The reported observations by Lien & D’Asaro (2004) of vertical fluid particle
dispersion in the ocean are fully consistent with the analysis presented here. We hope
that the present paper will stimulate more experimental work of that kind.

The authors acknowledge financial support from the Swedish Research Council.

Appendix
In this appendix we argue that the first three terms in (2.7) do not cancel each

other in such a way that the fourth term becomes a leading-order term for t � τ . The
first two terms within the square brackets in (2.7) can be rewritten as

dEP

dt
− d

dt
〈b(0)b(t)〉 =

1

2

d

dt
〈δb2〉, (4.1)

where 〈δb2〉 = 〈(b(t) − b(0))2〉 is the Lagrangian buoyancy structure function. This
function is equal to zero for t =0 and otherwise positive definite. It varies over the
integral time scale of the turbulence, which we have assumed is equal to T and should
therefore be a monotonically increasing function for t < T . This means that (4.1) is
positive and there will be no cancellation between the first three terms in (2.7) for
t < T . In the limit t → ∞, 〈δb2〉 goes to a constant in the case of stationary turbulence,
so that (4.1) goes to zero and there will be no cancellation in this case either. For
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freely decaying turbulence, there may be a cancellation in the limit t → ∞. This can
be seen from the fact that the second term in (2.7) goes to zero in the limit t → ∞,
while the first term is negative. If the energy transfer from kinetic to potential energy
goes to zero in the limit t → ∞, the first two terms in (2.7) will, in fact, cancel the third
term as t → ∞. However, this possible cancellation will take place first in the limit
t � T , while we have assumed that F1 → 0 in the limit t � τ , which is reached much
earlier. Therefore, the last term in (2.7) will be much smaller than the sum of the first
three terms when t � τ , in the case of both stationary and decaying turbulence.
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